Generalizing Continuous Time Bayesian Networks with Immediate Nodes
نویسنده
چکیده
An extension to Continuous Time Bayesian Networks (CTBN) called Generalized CTBN (GCTBN) is presented; the formalism allows one to model, in addition to continuous time delayed variables (with exponentially distributed transition rates), also non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. The usefulness of this kind of model is discussed through an example concerning the reliability of a simple component-based system. A semantic model of GCTBNs, based on the formalism of Generalized Stochastic Petri Nets (GSPN) is outlined, whose purpose is twofold: to provide a welldefined semantics for GCTBNs in terms of the underlying stochastic process, and to provide an actual mean to perform inference (both prediction and smoothing) on GCTBNs. The example case study is then used, in order to highlight the exploitation of GSPN analysis for posterior probability computation on the GCTBN model.
منابع مشابه
A GSPN Semantics for CTBN with Immediate Nodes
In this report we present an extension to Continuous Time Bayesian Networks (CTBN) called Generalized Continuous Time Bayesian Networks (GCTBN). The formalism allows one to model, in addition to continuous time delayed variables (with exponentially distributed transition rates), also non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. This allows the ...
متن کاملArrival probability in the stochastic networks with an established discrete time Markov chain
The probable lack of some arcs and nodes in the stochastic networks is considered in this paper, and its effect is shown as the arrival probability from a given source node to a given sink node. A discrete time Markov chain with an absorbing state is established in a directed acyclic network. Then, the probability of transition from the initial state to the absorbing state is computed. It is as...
متن کاملGeneralized Continuous Time Bayesian Networks and their GSPN Semantics
We present an extension to Continuous Time Bayesian Networks (CTBN) called Generalized CTBN (GCTBN). The formalism allows one to model continuous time delayed variables (with exponentially distributed transition rates), as well as non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. The usefulness of this kind of model is discussed through an example c...
متن کاملIrregular-Time Bayesian Networks
In many fields observations are performed irregularly along time, due to either measurement limitations or lack of a constant immanent rate. While discrete-time Markov models (as Dynamic Bayesian Networks) introduce either inefficient computation or an information loss to reasoning about such processes, continuous-time Markov models assume either a discrete state space (as Continuous-Time Bayes...
متن کاملProject Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013